Research Article

Clinical and Bacteriological Profile of Neonates on Ventilatory Support Suffering from Neonatal Sepsis in the Nicu of a Tertiary Care Teaching Hospital of Rural North India: a Cross-Sectional Observational Study

Dr. Harita Kirpal¹, Dr. Ipsit Batabyal², Dr. Neha Sharma³, Dr. Mujtaba Kalim⁴

¹Designation: Assistant Professor, Institute: Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala.

²Designation: Junior Resident, Institute: Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala

³Designation: Professor, Department of Bio-Sciences and Technology, Institute: Maharishi Markandeshwar Engineering College and University Coordinator (Enterpreneurship and Startups) Mullana, Ambala.

⁴Designation: Junior Resident, Institute: Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala.

Received: 20.08.25, Revised: 22.09.25, Accepted: 29.10.25

ABSTRACT

Background: Neonatal sepsis remains a leading contributor to morbidity and mortality in neonatal intensive care units (NICUs), and the emergence of multidrug-resistant pathogens complicates timely empirical therapy. Data that integrate clinical risk factors with contemporary microbiological trends are essential for constructing evidence-based antibiotic policies, particularly for ventilated neonates who constitute a high-risk cohort.

Methods: We conducted a cross-sectional observational study (30 April 2023 - 30 October 2024) among 50 consecutive neonates on invasive mechanical ventilation with a positive sepsis screen admitted to the NICU of a rural tertiary-care teaching hospital in North India. Specimens (blood, urine, cerebrospinal fluid, endotracheal-tube tip, tracheobronchial aspirate, umbilical venous catheter tip) were cultured using standard techniques; isolates were identified and their antimicrobial susceptibilities determined by the turbidimetric method in accordance with CLSI guidelines. Demographic, perinatal and clinical variables were recorded prospectively. Associations between culture positivity and predefined risk factors were analysed using \mathbf{x}^2 or Student's t test, as appropriate; p < 0.05 was considered significant.

Results: The cohort comprised 28 males (56%) and 22 females; mean (\pm SD) birth weight was 2.31 \pm 0.75 kg, with 58% weighing < 2.5 kg and 56% born pre-term. Early-onset sepsis (\leq 72 h of life) predominated (58%). Twenty-one neonates (42%) required ventilation within 72 h of admission. Overall culture-positivity was 38% (19/50). *Klebsiella pneumoniae* and *Acinetobacter baumannii* (each 19%) were the most frequent pathogens, followed by *Pseudomonas aeruginosa* (10%). Blood was the commonest source (77%), followed by endotracheal-tube tips (18%). Tigecycline (20% of isolates), colistin (16%) and meropenem/vancomycin (12%) displayed the highest in-vitro activity. Male sex, prematurity, low birth weight and maternal complications (prolonged rupture of membranes, gestational diabetes, hypertensive disorders) were independently associated with culture-proven sepsis (p < 0.05 for all).

Conclusions: Ventilated neonates in our rural NICU face a substantial burden of multidrug-resistant Gram-negative sepsis. Unit-specific surveillance data underscore the need to incorporate tigecycline or colistin into second-line empirical regimens while strengthening infection-control practices targeting pre-term, low-birth-weight male infants and mothers with obstetric complications.

Keywords: Neonatal Sepsis; Ventilatory Support; Antibiotic Resistance; Klebsiella Pneumoniae; Acinetobacter Baumannii; Rural India.

INTRODUCTION

Neonatal sepsis, meaning a systemic reaction to infection in infants ≤28 days, is a serious international health emergency. In high income countries, the rate is 1–4 per 1 000 live births,

but rises to 49–170 per 1 000 in low and middle income countries, where deaths from the illness are common, at 24% [1,2]. Most often, EOS develops in the first 72 hours (or sometimes up to seven days according to some authorities)

and is passed to the infant from the mother. late onset sepsis (LOS) presents afterwards and is often a result of hospital infection [3]. With advances in caring for mothers and babies during birth, VLBW babies have greater survival rates., invasive procedures—particularly mechanical ventilation—have lengthened NICU stays and increased susceptibility to health-care-associated infections [4].

Diagnostic confirmation hinges on blood culture, yet its 48-h turnaround necessitates empiric antimicrobials started on clinical suspicion or a positive The assessment for sepsis covers Included in the study were C reactive protein, immature to total neutrophil ratio, total leucocyte count, absolute neutrophil count, and micro ESR [5]. More misuse of antibiotics is making AMR worse and could mean that traditional treatments like ampicillin plus gentamicin/cefotaxime do not work as effectively [6, 7]. Multidrug resistance in Gram negative bacilli, for example Klebsiella pneumoniae and Acinetobacter baumannii, is on the rise, and greater carbapenem resistance, is noted by recent Indian NICU surveillance [8].Empirical therapy must therefore be grounded in current, unit-specific epidemiology. Ventilated neonates represent a distinct subset: endotracheal intubation disrupts mucosal barriers, fosters colonisation and biofilm formation, and mandates broad-spectrum antibiotics when ventilator-associated pneumonia is suspected [4]. Yet there are scarce Indian data linking clinical determinants with contemporary microbiological patterns among ventilated neonates in rural NICUs.

Recognising this gap, we aimed to characterise (i) the demographic, perinatal and clinical profile; (ii) the aetiological spectrum and AMR pattern of culture-positive isolates; and (iii) the risk factors associated with culture-proven sepsis among neonates on invasive ventilation in the NICU of a rural tertiary-care teaching hospital in North India. Such data are vital for developing evidence-based antibiotic protocols and optimising stewardship and infection-control interventions.

MATERIALS AND METHODS Study Design, Setting and Period

The study was an observational, cross sectional one carried out in the 20 bed level III NICU of MMIMSR, Mullana, Ambala, Haryana, India, between 30 April 2023 and 30 October 2024. Most of the people who use the institute come from rural and semi urban places in North India.

Participants

All consecutively admitted neonates who fulfilled both of the following criteria were enrolled: (i) positive sepsis screen (≥2 abnormal parameters among total leucocyte < 5 000 cells mm⁻³, age-appropriate count absolute neutrophil count, immature-to-total neutrophil ratio > 0.20, micro-ESR > 15 mm $1 h^{-1}$, or positive C-reactive protein); and (ii) requirement of invasive mechanical ventilation for ≥24 h. Exclusion comprised sepsis-screen-negative neonates, major congenital anomalies and refusal of informed consent.

Sample size was calculated using the single-population proportion formula $n=Z^2\times P(1-P)/d^2$, anticipating a culture-positivity proportion of 35% from regional data, 95% confidence level (Z=1.96) and 15% precision, yielding $n\approx45$; we enrolled 50 neonates.

Data Collection

Demographic (sex, birth weight, gestational age), perinatal (mode/place of delivery, obstetric complications) and clinical data (age at onset of symptoms, presenting features, ventilator parameters) were recorded on a pre-validated proforma. EOS was defined as sepsis onset \leq 72 h of life; LOS as >72 h.

Specimen Collection and Microbiological Analysis

Within 24h of enrolment—or within 48h for endotracheal-tube (ET) tips—specimens were aseptically obtained: blood (1 mL) for aerobic culture, urine (suprapubic aspiration or sterile catheter), cerebrospinal fluid (where clinically indicated), ET-tip, tracheobronchial aspirate and umbilical venous catheter (UVC) tip (if removed). The samples were grown on MacConkey, blood, and nutrient agar, nutrient and glucose broths, as well as Sabouraud dextrose agar for fungi. The organisms were detected with the use of standard biochemical methods.

The turbidimetric method was used to test antibiotic susceptibility and CLSI 2023 rules were used to assign results. MDR was reported if an organism resisted at least one medicine in three or more antibiotic classes.

Outcome Measures

Primary outcome: proportion of culture-positive sepsis. Secondary outcomes: distribution of pathogens and their antibiotic-susceptibility profiles; association of culture positivity with

sex, birth weight, gestation, mode of delivery and maternal complications.

Statistical Analysis

Microsoft® Excel was used to enter the data, and we analyzed them with SPSS® v20. For continuous variables, we gave the means and standard deviations (SD). We listed the cases for every category and worked out the percentages. The t test was applied to look for mean differences and the χ^2 (or Fisher's exact) test was used to look for proportion differences. P < 0.05 denoted statistical significance.

Ethical Considerations

The Institutional Ethics Committee (MMIMSR/IEC/2023/2558) allowed the study to be done. 30 April 2023). We got written informed consent from mothers or legal quardians.

RESULTS

Demographic and Perinatal Profile

Of 50 ventilated neonates, 28 were male (56%) and 22 female (44%). The mean birth weight was 2.31 ± 0.75 kg; 58% were low-birth-weight (< 2.5 kg) and 24% very-low-birth-weight (< 1.5 kg) (Table 1). Fifty-six per cent were pre-term (< 37 weeks) with a mean gestational age of 35.2 ± 2.8 weeks. Vaginal delivery accounted for 60% and lower-segment caesarean section 40%. Maternal complications were documented in 52%, the commonest being gestational diabetes mellitus (GDM) and prolonged rupture of membranes (PROM) (each 10%) (Table 2).

Clinical Presentation and Sepsis Screening EOS was noted in 29 infants (58%); LOS in 21 (42%). Respiratory distress (56%) was the

(42%). Respiratory distress (56%) was the predominant presentation, followed by poor

feeding (50 %) and lethargy (44 %) (Table 3). Mean total leucocyte and absolute neutrophil counts were 3923 ± 981 and 1673 ± 434 cells mm⁻³, respectively; median C-reactive protein was 38 mg L^{-1} (IQR 22–64).

Culture Yield and Pathogen Distribution

Nineteen neonates (38%) yielded positive cultures from at least one site. Blood accounted for the majority (17/22 positive specimens; 77%), followed by ET-tip (4, 18%) and UVC-tip (1, 5%) (Figure 1). Klebsiella pneumoniae and Acinetobacter baumannii were isolated in four cases each (19%), with Pseudomonas aeruginosa isolated in two (10%).Gram-positive isolates comprised Staphylococcus aureus (2, 10%) and coagulase-negative Staphylococcus spp. (1, 5%) (Figure 2).

Antimicrobial Susceptibility

Overall, 79 % of Gram-negative isolates were MDR. Tigecycline displayed the highest susceptibility (20%), followed by colistin (16%), vancomycin (12% of Gram-positive isolates) and meropenem (12%) (Figure 3). Resistance to third-generation cephalosporins exceeded 85%.

Risk-Factor Analysis

Culture positivity was significantly higher among males (54% vs 18%; $\chi^2 = 6.54$; p = 0.01) (Table 4) and pre-term neonates (57% vs 14%; $\chi^2 = 9.90$; p = 0.002) (Table 5). Low-birth-weight (< 2.5 kg) infants were twice as likely to be culture-positive (OR 2.15, 95% CI 1.01-4.63). Maternal complications conferred a four-fold increased risk (57.7% vs 17%; $\chi^2 = 7.86$; p = 0.005).

Tables

Table 1. Birth-Weight Distribution of Study Subjects (N = 50)

Birth-weight category	Frequency	Percentage
≤1.5 kg	12	24%
> 1.5–2.5 kg	17	34%
> 2.5 kg	21	42 %
Total / Mean ± SD	50	100 % / 2.31 ± 0.75 kg

Table 2. Maternal Complications Identified in the Cohort (N = 26)

the state of the s				
Complication	n	%		
Gestational diabetes mellitus	5	10.0		
Prolonged rupture of membranes	5	10.0		
Hypothyroidism	2	6.0		
Pregnancy-induced hypertension	2	4.0		
Pre-eclampsia	2	4.0		
Others*	10	20.0		

Total	26	52.0		
Table 2 December Complete in Martine I Name to with Comic (N. 10)				

Table 3. Presenting Symptoms in	Ventilated Neonates with Se	psis (N = 50)
_		_

Symptom	Frequency	Percentage
Respiratory distress	28	56%
Poor feeding	25	50%
Lethargy	22	44 %
Convulsions	10	20%
Vomiting	10	20%
Cyanosis	8	16%
Fever	7	14%

Table 4. Association between Culture Positivity And Sex Of Neonates

Sex	Culture-positive	Culture-negative	Total	χ² (df=1)	<i>p</i> value
Male (n = 28)	15 (53.6 %)	13 (46.4%)	28	6.54	0.010
Female (n = 22)	4 (18.2 %)	18 (81.8%)	22		

Table 5. Association between Culture Positivity And Gestational Age

Gestation	Culture-positive	Culture-negative	Total	χ² (df=1)	<i>p</i> value
Pre-term (< 37 weeks, n = 28)	16 (57.1%)	12 (42.9%)	28	9.90	0.002
Term (n = 22)	3 (13.6%)	19 (86.4%)	22		

Figures

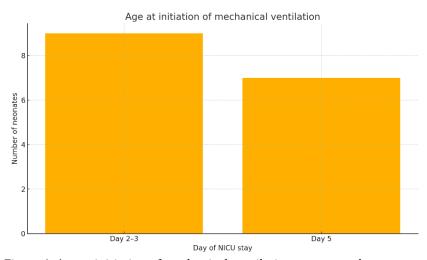


Figure 1. Age at initiation of mechanical ventilation among study neonates.

Distribution of pathogens isolated from culture-positive specimens

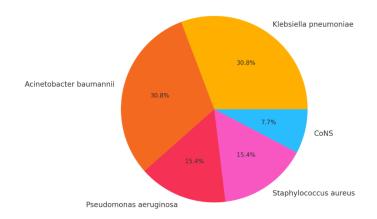


Figure 2. Distribution of pathogens isolated from culture-positive specimens.

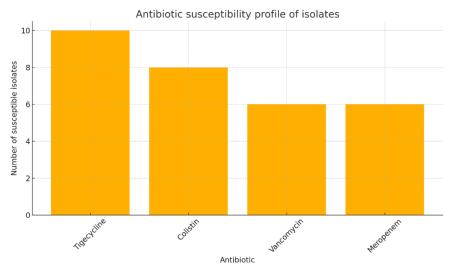


Figure 3. Antibiotic-susceptibility profile of isolated pathogens.

DISCUSSION

Our study documents a 38 % culture-positivity rate among ventilated neonates with sepsis-screen positivity—higher than reports from Nepal (10.8 %) [21] and Botswana (9.8 %) [31] but comparable to Indian series (16–54 %) [18,24]. The elevated yield may reflect strict aseptic sampling before initiation of second-line antibiotics and inclusion of ET-tip cultures which improve detection of airway colonisation.

Consistent with earlier Indian and Ugandan NICU reports [16, 24, 33], MDR Gram-negative bacilli dominated the aetiological spectrum, led by K. pneumoniae and A. baumannii. Their resilience in humid hospital environments, biofilm-forming capacity and selective pressure from empirical cephalosporins underpin this predominance [35]. The alarming prevalence of carbapenem-resistant isolates (>80%) echoes **AMR** trends national and mandates reconsideration of last-resort agents such as and tigecycline [17, 20]. colistin tigecycline demonstrated the highest in-vitro susceptibility, paediatric pharmacokinetic data remain limited; cautious, weight-based dosing and therapeutic drug monitoring are advisable pending further trials.

Male sex, prematurity and low birth weight emerged as independent risk factors for culture-proven sepsis, corroborating data from Nepal [22], Nigeria [25] and South India [33]. The immunological vulnerability of male neonates—attributed to X-chromosome-linked immune-regulatory genes—may partly explain the sex disparity [23]. Pre-term gut dysbiosis, immature skin—mucosal barriers and frequent

invasive procedures increase colonisation by MDR organisms, translating into higher sepsis rates [36]. Obstetric complications, notably PROM and GDM, quadrupled sepsis risk; ascending infections and metabolic derangements may predispose to intra-uterine and peripartum bacterial transmission.

Our findings inform empiric antibiotic policy. Given predominant MDR Gram-negatives, empirical coverage with piperacillin-tazobactam plus amikacin may be inadequate; the addition of a colistin- or tigecycline-based regimen could improve early target-match while awaiting cultures. However, antibiotic stewardship dictate periodic de-escalation principles according to sensitivities, alongside robust infection-control strategies—hand hygiene, ventilator-bundle compliance, cohorting of colonised infants and periodic environmental surveillance [8, 14].

Limitations include the single-centre design, modest sample size and lack of genotypic resistance profiling. The observational nature precludes causal inferences. Nevertheless, the prospective design, inclusion of multiple specimen types and rigorous CLSI-compliant susceptibility testing underpin the study's internal validity.

Future research should incorporate multi-centre networks, whole-genome sequencing to delineate resistance determinants, and pharmacodynamic modelling of newer antibiotics in neonates.

CONCLUSION

Ventilated neonates in our rural NICU bear a significant burden of MDR Gram-negative

sepsis, predominantly due to Klebsiella pneumoniae and Acinetobacter baumannii. Male sex, prematurity, low birth weight and maternal obstetric complications markedly increase the likelihood of culture-proven infection. Tigecycline and colistin retain the in-vitro activity and warrant areatest consideration in second-line empiric regimens, pending culture results. Continuous, unit-specific surveillance and stringent infection-control measures are paramount to

- 1. Seale AC, Blencowe H, Manu AA, Nair H, Bahl R, Qazi SA, Zaidi AK, Berkley JA, Cousens SN, Lawn JE. Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, South Asia, and Latin America for 2012: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(8):731-741.
- 2. Thaver D, Zaidi AK. Burden of neonatal infections in developing countries: a review of evidence from community-based studies. *Pediatr Infect Dis J.* 2009;28(1 Suppl):S3-S9.
- 3. Celik IH, Hanna M, Canpolat FE, Pammi M. Diagnosis of neonatal sepsis: the past, present and future. *Pediatr Res.* 2022;91(3):337-350.
- 4. Bozaykut A, Ipek IO, Kilic BD. Predicting neonatal sepsis in ventilated neonates. *Indian J Pediatr.* 2008;75(1):39-42.
- 5. Benitz WE. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. *Clin Perinatol*. 2010;37(2):421-438.
- Dutta S, Kadam S, Saini SS, et al. Management of neonatal sepsis. NNF Clinical Practice Guidelines. 2010:155-171.
- 7. Ramirez CB, Cantey JB. Antibiotic resistance in the neonatal intensive care unit. *NeoReviews*. 2019;20(3):e135-e143.
- 8. Yeshiwas AG, Bayeh GM, Tsega TD, Tsega SS, Gebeyehu AA, Asmare ZA, et al. A mixed-method study on antimicrobial resistance infection drivers in neonatal intensive care units: pathways, risks, and solutions. *Antimicrob Resist Infect Control*. 2025;14:15.
- National Neonatology Forum of India. National Neonatal Perinatal Database Network: Report 2002-2003. New Delhi: NNF; 2004.
- Investigators of National Neonatal Perinatal Database. Changing pattern of bacteriologic profile in neonatal sepsis among intramural babies. J Neonatol. 2006;20:8-15.

curbing neonatal sepsis mortality and mitigating antimicrobial resistance.

Declarations

Funding: None.

Conflicts of interest: None declared.

Ethical Approval: Institutional Ethics Committee approval obtained (MMIMSR/IEC/2023/2558, 30 April 2023). Informed consent was secured from parents/guardians.

REFERENCES

- 11. Viswanathan R, Singh AK, Ghosh C, et al. Profile of neonatal septicaemia at a district-level sick neonatal care unit. *J Health Popul Nutr.* 2012;30(1):41-48.
- 12. Foglia E, Meier MD, Elward A. Ventilator-associated pneumonia in neonatal and paediatric intensive-care-unit patients. *Clin Microbiol Rev.* 2007;20(3):409-425.
- 13. Garland JS. Strategies to prevent ventilator-associated pneumonia in neonates. *Clin Perinatol*. 2010;37(3):629-643.
- 14. Carcillo JA. Pediatric septic shock and multiple organ failure. *Crit Care Clin*. 2003;19(2):413-440.
- 15. Zamarano H, Musinguzi B, Kabajulizi I, Manirakiza G, Guti W, Muhwezi I, et al. Bacteriological profile, antibiotic susceptibility and factors associated with neonatal septicaemia at Kilembe Mines Hospital, Uganda. *BMC Microbiol*. 2021;21(1):303.
- 16. Vergnano S, Menson E, Kennea N, Embleton N, Russell AB, Watts T, et al. Neonatal infections in England: the NeonIN surveillance network. *Arch Dis Child Fetal Neonatal Ed.* 2011;96(1):F9-F14.
- 17. Mariani M, Parodi A, Minghetti D, Ramenghi LA, Palmero C, Ugolotti E, et al. Early and late-onset neonatal sepsis: epidemiology and effectiveness of empirical antibacterial therapy in a level-III neonatal intensive care unit. *Antibiotics*. 2022;11(2):284.
- 18. Tiseo G, Brigante G, Giacobbe DR, Maraolo AE, Gona F, Falcone M, et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: guideline endorsed by Italian societies. *Int J Antimicrob Agents*. 2022;60:106611.
- 19. Thapa S, Sapkota LB. Changing trend of neonatal septicaemia and antibiotic susceptibility pattern of isolates in Nepal. *Int J Pediatr.* 2019;2019:3784529.

- 20. Manandhar S, Amatya P, Ansari I, Joshi N, Maharjan N, Dongol S, et al. Risk factors for the development of neonatal sepsis in a neonatal intensive care unit of a tertiary-care hospital of Nepal. *BMC Infect Dis.* 2021;21:546.
- 21. Jatsho J, Nishizawa Y, Pelzom D, Sharma R. Clinical and bacteriological profile of neonatal sepsis: a prospective hospital-based study. *Int J Pediatr.* 2020;2020:1835945.
- 22. Siddiqui T, Dubey A, Kar M, Patel SS, Sahu C, Ghoshal U. Bacteriological profiles and antibiotic susceptibility of neonatal sepsis in a university hospital of Northern India. *J Family Med Prim Care*. 2023;12(3):493-498.
- 23. Olorukooba AA, Ifusemu WR, Ibrahim MS, Jibril MB, Amadu L, Lawal BB. Prevalence and factors associated with neonatal sepsis in a tertiary hospital, North-West Nigeria. *Niger Med J.* 2020;61(2):60-66.
- 24. Utomo MT. Risk factors of neonatal sepsis: a preliminary study in Dr Soetomo Hospital. *Indones J Trop Infect Dis.* 2010;1:23-26.
- 25. Assudani HJ, Gusani JK, Mehta SJ, Agravat HH, Kothari KB. Bacteriological profiles of septicaemia in neonates at a tertiary-care hospital, Gujarat, India. *J Res Med Dent Sci.* 2017;3(2):148-151.
- 26. Hafsa A, Fakruddin M, Hakim MA, Sharma JD. Neonatal bacteraemia in a neonatal intensive care unit: analysis of causative organisms and antimicrobial susceptibility. *Bangladesh J Med Sci.* 2011;10(3):187-194.
- 27. Sarasam S. Clinical and epidemiological profile of neonatal sepsis in a referral care NICU in South Kerala. *J Med Sci Clin Res.* 2017;4(3):19327-19333.
- 28. Al-Shamahy HA, Sabrah AA, Al-Robasi AB, Naser SM. Types of bacteria associated

- with neonatal sepsis in Al-Thawra University Hospital, Sana'a, Yemen, and their antimicrobial profile. *Sultan Qaboos Univ Med J.* 2012;12(1):48-54.
- 29. Mudzikati L, Dramowski A. Neonatal septicaemia: prevalence and antimicrobial susceptibility patterns of common pathogens at Princess Marina Hospital, Botswana. South Afr J Infect Dis. 2015;30(3):108-113.
- 30. Ansari S, Nepal HP, Gautam R, Shrestha S, Neopane P, Chapagain ML. Neonatal septicaemia in Nepal: early-onset versus late-onset. *Int J Pediatr.* 2015;2015:379806.
- 31. Zakariya BP, Bhat V, Harish BN, Arun Babu T, Joseph NM. Neonatal sepsis in a tertiary-care hospital in South India: bacteriological profile and antibiotic sensitivity pattern. *Indian J Pediatr*. 2011;78(4):413-417.
- 32. Muley VA, Ghadage DP, Bhore AV. Bacteriological profile of neonatal septicaemia in a tertiary-care hospital from Western India. *J Glob Infect Dis.* 2015;7(2):75-77.
- 33. Gohel K, Jojera A, Soni S, Gang S, Sabnis R, Desai M. Bacteriological profile and drug-resistance patterns of blood-culture isolates in a tertiary-care nephrourology institute. *Biomed Res Int.* 2014:2014:153747.
- 34. Tsai MH, Hsu JF, Chu SM, Lien R, Huang HR, Chiang MC, et al. Incidence, clinical characteristics and risk factors for adverse outcome in neonates with late-onset sepsis. *Pediatr Infect Dis J.* 2014;33(1):e7-e13.
- 35. Mathur M, Shah H, Khambadkone S, Tilve GH, Sarma MS. Bacteriological profile of neonatal septicaemia cases (1990-91). *J Postgrad Med.* 1994;40:18-20.